The Smart Bird Feeder

Paul Amoruso, John Hauff,

Nikki Marrow, Matthew Wilkinson

Dept. of Electrical and Computer Engineering,
University of Central Florida, Orlando, Florida,
32816-2450

ABSTRACT — THIS DOCUMENT DETAILS THE DESIGN AND
FUNCTIONALITY OF THE SMART BIRD FEEDER. THE PURPOSE OF THIS
DEVICE IS TO ADDRESS THE COMMON ISSUES REGARDING TIME INPUT
IN RELATION TO THE HOBBY OF BIRD FEEDING, AND FILL THE SPACE
IN THE MARKET WITH A DESIGN THAT ADDRESSES THESE CONCERNS.
THE SMART BIRD FEEDER IS DESIGNED AROUND AUTOMATIZATION
TO MINIMIZE EFFORT REQUIRED BY A USER WHILE STILL
MAINTAINING MAXIMUM RESULTS. BY DESIGNING THE ENGINEERING
REQUIREMENTS WITH THIS IN MIND, A BASE IS SET BY WHICH TO
JUDGE THE SUCCESS OF THE PROJECT. THE SMART BIRD FEEDER
INCORPORATES MACHINE LEARNING TO IDENTIFY AND DETECT
SPECIFIC BIRD SPECIES, AN ACCOMPANYING APPLICATION FOR
NOTIFICATION SYSTEMS, AND DEFENSE MECHANISMS FOR BACKYARD
PESTS. THE PAPER DETAILS WHAT COMPONENTS WERE SELECTED AND
HOW THEY IMPACTED THE OVERALL DESIGN, AS WELL AS RELEVANT
DESIGNS AND SCHEMATICS FOR THESE COMPONENTS. THUS, BY
MEETING OR EXCEEDING THE DESIGN REQUIREMENTS, THE GOAL WAS
ACCOMPLISHED THROUGH THE SMART BIRD FEEDER'S CREATION.

INDExX TERMS — MACHINE LEARNING, OBJECT DETECTION,
PCB, ULTRASONIC, MICROCONTROLLER, PULSE-WIDTH
MODULATION, SERIAL COMMUNICATION, MOBILE APPLICATION,
AUTONOMOUS.

I. INTRODUCTION

The design of the Smart Bird Feeder began with
recognizing the common pitfalls regarding a group
member’s favorite hobby: bird feeding. A hobbyist could
spend an indefinite amount of time waiting and watching
their feeder while nothing happens, especially if they are
waiting for a specific bird species to show up. This is time
the hobbyist could instead spend performing other tasks.
Add in the risk of backyard pests scaring away or
inhibiting birds from approaching, and it’s clear why the
time sink for the hobby is almost unapproachable. This
project's motivation is to maximize the potential of the
bird watching and feeding hobby and minimize the
required time commitment from the user, while still
offering an enjoyable hobbyist experience.

This line of thinking led to the creation of the Smart
Bird Feeder. It has been equipped with hardware that is
used to train and deploy a machine learning model that
can detect various species of birds and alert the user when
a bird is spotted. The ability to utilize machine learning to

keep track of not only when a bird arrives to feed, but
what kind of species is currently feeding is essential to the
automatic nature of the device. To pass on this information
to the hobbyist effectively, the feeder is paired with a
mobile application which includes the ability to autosave
bird memories the user might have missed, categorize
birds, send notifications for power and feed levels, and
defense mechanisms for backyard pests.

There is no product that exists on the marketplace with a
combination of all of these features, and thus the group
seeks to fill this empty space by making a specialized bird
feeder like no other. The Smart Bird Feeder has achieved
the goals that this project was established to meet, with a
focus set on maximizing potential of the hobby while
requiring a minimum amount of effort.

II. ENGINEERING REQUIREMENTS

With the overarching design goal in mind, the group set
out to meet a number of engineering requirements that
would emphasize the completion of that goal. The full list
of engineering requirements can be found in the full paper
for this project, but the three major demonstrable
requirements are listed as follows.

Table 1 - Major engineering requirements

Engineering Requirement Specification
Accuracy of bird species and squirrel
detection must exceed a certain > 90%
confidence level to capture images.
Hatch door closing time should close

o . . < 3 seconds
within a certain amount of time.
Users will be notified of a new bird
e .. . < 10 seconds

memory within a certain time period.

The group has met each one of these requirements with
The Smart Bird Feeder design. The demo requirements are
set to focus on the accuracy of species detection, defense
mechanism capability, and notification timeline. Further
requirements specification can be found in the full paper
for this project.

III. SystEm CONCEPT

Detailing the concept for how The Smart Bird Feeder
operates is important. A system flowchart helps to
illustrate the overall predicted actions of the system.

System]
Boot

Send low feed

push notification
to user

Feed level

is low?

Motion
detected
at feeder?

Close hatch cover
(if open) &
activate alarm

Open hatch cover
(if closed) & stop
alarm

Send new bird
memory push —
notification to user

Save bird memory
to application

Fig 1.

After system startup, a PIR sensor senses when objects
are present at the feeder, and this causes the camera
capture and machine learning model object detection cycle
for detecting birds and squirrels to start.

The squirrel is detected cycle is triggered by the ML
model detecting a squirrel nearby the bird feeder. This
model was retrained well enough to meet the engineering
requirement of a 90% or higher confidence level when
detecting bird species and squirrels. The Smart Bird
Feeder reacts by entering its defensive state/cycle. This
means that the feed cover hatch is closed by a rotating
motor, and an alarm to deter the invading squirrels is
sounded. It should be noted that the closing of the hatch
occurs fast enough to meet the engineering requirement
established for its closing speed. The system's defense
state will persist until squirrels are no longer detected by
the ML model for some time. However, the command
used to close the hatch and sound the alarm is not repeated
while the hatch is closed, and is only given if the hatch is
presently open (i.e., to switch states from non-defensive to
defensive).

If a squirrel is not detected for some time, this means
that the system will not go into its defense cycle, but will
check if a bird is detected. If this is true, the system will
open the feed hatch cover (if it is presently closed), which
in turn causes the alarm to deactivate. The Smart Bird
Feeder then communicates wirelessly with a backend API
to autonomously save an image of the detected bird to a
user's mobile application, and communicates with a push
notification service to send a push notification to a user's
phone that a new bird memory has been created. It is
notable that this notification will be received by the user in
10 seconds or less, which satisfies one of this project's
engineering requirements. If a bird is not found by the ML

System flowchart

model, the system cycle simply loops back to where it
began at startup.

The remaining cycle in The Smart Bird Feeder's system
concept is a check for low bird feed levels using an
ultrasonic range finder sensor. When bird feed levels are
low, the system communicates with a push notification
service to send a push notification to a user's phone
notifying the user to refill the bird feed in The Smart Bird
Feeder. It is not necessary to repeat this cycle constantly in
an uninterrupted order, and so a delay is used before
triggering the cycle to check feed levels again.

IV. PCB DESIGN & OVERALL SCHEMATIC

The PCB is designed to link and power all of the
components for the Smart Bird Feeder. Figure 2 on the
next page has a detailed schematic that breaks down how
components are wired together. The DC power port,
voltage regulation circuit, pin headers, sensors, speaker,
and MCU circuit are shown to be connected through the
PCB pins. A more in-depth breakdown of the functionality
of these components is found throughout this section.

A. DC Power Jack Port

The DC power Jack is a port used to connect our 12V
rechargeable battery to the circuit. This jack has 3 pins,
called the insertion detection pin, the tip, and the sleeve.
The tip will have the positive 12V applied to it from the
battery, while the sleeve acts as the OV, or ground. When
no plug is inserted, the insertion detection pin is shorted to
the sleeve pin. When a plug is inserted, these two pins are
no longer connected. In our design, we have shorted these
two pins via traces on the PCB.

B. Voltage Regulation

The components in our system need either 5V or 3.3V
for operation. The only component that requires 3.3V is
the microcontroller, while the Jetson Nano Developer Kit,
ultrasonic sensor, speaker, micro servo motor, and PIR
sensor all require 5V for operation. Since most
components are utilizing 5V, we have two regulators
supplying 5V and one regulator supplying 3.3V. These
regulators, the LM1084, convert 12V from the battery
input to the respective 5V and 3.3V. There are two
regulators for supplying 5V, and one for the 3.3V. One of
the two 5V regulators supplies current to the Jetson Nano,
while the other supplies current to the rest of the
peripherals. This was the chosen configuration since the
Jetson Nano Developer Kit consumes the most power out
of all components.

I 3 a

Ultrasonic
Sensor
Output

DC Power Jack

—

Voltage Regulation Circuit
LED Power

Indicator

5V Pin Headers

Capacitance

5V Transistor ¢

Reset Pin

W Pullup/Pulldown

y E—

MCU and Pin Headers

o XoNoXo)
(OB OR R0}

=
£

USB Connector Circuit

Speaker Circuit

(LALLLY
i

5
g

PIR Sensor

Fig 2.

C. Output Capacitance & Reset Pin Pullup/Pulldown
According to the MSP430G2553 documentation [13],

the reset pin requires a 47k ohm pullup resistor and a 10nF

pulldown capacitor. This is in the PCB design, in addition
to a 10uF and 1uF capacitors to help with decoupling.

Overall Schematic

D. USB Power Output Connector

The USB connector provides 5V from the output of the
voltage regulation circuit to the power input of the Jetson
Nano Developer Kit. A ferrite bead was added between
the shield of the USB connector and ground in order to
prevent noise interference.

E. Fielect Piezo Alarm

The piezoelectric alarm is an additive component to the
defense mechanism to ensure that squirrels choose not to
linger after the hatch door prevents access to the bird feed.
The less time that backyard pest spends near the bird
feeder, the greater the usefulness of the device. Squirrels
and other small rodents are easily spooked by sudden loud
sounds. The requirements for the alarm started with alarm
safety requirements, ensuring that the alarm was not
louder than 90dB. Since the regulators on the PCB circuit
output 5 Volts, it was necessary to find an alarm rated at 5
Volts. The chosen piezo alarm is rated at 80dB at 5 V
(5mA), making it great for this particular application.

The alarm functions by converting electrical energy into
mechanical energy. The applied voltage will induce a
stress inside the metal diaphragm to undergo tension or

compression. The design connects the speaker to the
MSP430 via pins on the PCB, and will control the speaker
using PWM (Pulse Width Modulation) to reverberate the
metal diaphragm. The speaker is set to go off when a
squirrel is detected by the Jetson Nano, which will send a
command via UART to the MCU, which will then provide
a PWM signal to the alarm causing it to blare until a

squirrel is no longer present.
— <« :; + - —>; =
+

Fig 3. The Piezoelectric Effect [12]
F. HC-SR04 Ultrasonic Sensor

The ultrasonic sensor is used to monitor the feed levels
within the bird feeding chamber. The team started with the
proposed functionalities to define what the required specs
would be for the sensor. Given the constrained space
inside the chamber, a sensor that could accurately and
consistently measure distance readings in spaces as small
as 4 - 9 inches away from the sensor location was
important. The group also wanted to ensure that the
current draw for the device was low given the unit was
powered by a battery system.

The HC-SR04 Ultrasonic Sensor exceeded expectations.
With a minimum detection range of 2 cm, the enclosed

space concern was promptly addressed. The device also
has an accuracy of 3 mm which is precise enough for the
application. The current draw of the device is 15 mA.

The device is set up to communicate with the MSP430
using PWM (Pulse width modulation). The sensor works
by sending out a signal from its transmitter at an 8§ cycle
burst of ultrasound waves at 40 kHz and then receiving its
reflected signal back to its receiver. This signal is then sent
from the Echo pin of the sensor to the MCU. The pins
from the sensor to the MCU are Vcc, Trig, Echo, and
GND. The Trig pin is responsible for receiving the start
signal from the MSP430. In order to save power, the
sensor is only active on startup and when pulsed by the
MSP430. The MSP430 is commanded by the Jetson Nano
to send a pulse to the Ultrasonic device periodically to
monitor bird feed levels.

HC-SR04 Pinout

OV or Ground)

Fig4. HC-SRO04 Sensor [6]
G. PIR Sensor

The PIR sensor is a bonus feature which was established
as a stretch goal to make the Smart Bird Feeder more
power efficient by only having it run the intensive machine
learning object detection cycle only when the PIR sensor
detects something at the perch.

In the design, a PIR sensor is placed on the bird feeder
facing the perch. The sensor uses a pair of pyroelectric
sensors to detect heat energy in the surrounding
environment. These two sensors sit next to each other, and
when the signal differential between them fluctuates, the
sensor will engage. The MSP430 becomes aware of this
by using its ADC module, which can read analog voltage.
The ADC pin on the MSP430 is connected to the PIR
sensor’s signal pin. This signal pin outputs a logic high to
the MSP430 if an object is detected. Once the MSP430 is
aware that a bird or squirrel has arrived at the perch, it
sends a UART message to the development kit, notifying
the kit that it should start its object detection program.

H. MSP430G2553 Microcontroller

While most of the processing power for the Smart Bird
Feeder is handled by the Jetson Nano, the MSP430 is the
hub of any and all interaction between devices and
peripherals for the project. The MSP430 software is

responsible for gathering input data from the Nano, PIR
sensor, and ultrasonic sensor, and outputting signals to the
alarm and motor.

The focused requirements when choosing a MCU were
available pins and low current consumption. The processor
speed was not of concern, as there are a minimal amount
of computations the MCU needs to perform in the design.
The MSP430 is an ultra-low-power microcontroller with
16-bit RISC CPU and 16-bit registers. Consuming only
203uA at 3.3 V, it’s a strong choice regarding power
consumption. The 24 available pins were more than
enough for the design. The group's familiarity with this
line of processors also made the design and testing phase
go by more smoothly.

The software written in C for the MSP430 is responsible
for interpreting commands received from the Nano, and
then executing the action corresponding to the command.
These actions include opening/closing the hatch using the
servo motor, taking readings of the bird feed level with the
ultrasonic sensor, and playing tones on the piezoelectric
speaker. The only action that does not require a command
from the Nano relates to the PIR sensor. The MSP430
measures the voltage level emitting from the PIR sensor,
and only when this voltage goes high, corresponding to an
animal at the feeder’s perch, will the MSP430 then send
an alert to the Jetson Nano. The Jetson Nano will then
resume object detection.

1. SG90 Micro Servo Motor

The servo motor is a defense mechanism component
used to rotate the hatch door which blocks access to the
feed under certain conditions. This component directly
relates to one of the demoable requirements. Given the
hatch door needs to close in 3 seconds or less, the speed
of the motor needs to suit that requirement.

The SG90 Micro Servo Motor max speed is rated at 0.1

sec/60° which is ample speed to achieve the 90° rotational
turning distance. It also has a low current consumption of
0.2 A.

The SG90 servo uses PWM to communicate with the
MCU. Supplying the motor with a certain pulse will result
in the desired rotational movement. In this application, the
motor supplied with a 1.5 ms pulse will rotate

approximately 90° in either direction depending on the
period of the PWM signal. The MCU determines the
necessary action based on readings from the Jetson Nano
using UART communication.

V. OBIECT DETECTION TECHNOLOGY CONCEPT AND DESIGN

Proper care and consideration regarding the choice of
technologies to use for object detection via machine

learning was imperative to the success of the project.
Without adequate components to perform these tasks,
none of the software developed for The Smart Bird Feeder
would function properly.

A. NVIDIA Jetson Nano Developer Kit

The NVIDIA Jetson Nano Developer Kit 4GB model
was selected to run the software for object detection and
mobile application interaction for The Smart Bird Feeder.
The Jetson Nano includes a 128-core NVIDIA Maxwell™
GPU and a Quad-core ARM® A57 CPU, which are
perfectly suited to perform the aforementioned tasks.
When selecting a product to perform these tasks, the
Jetson Nano Developer Kit was compared with similar
Edge devices built to perform machine learning inference,
such as the Arduino Nano 33 BLE Sense, the Coral Dev
Board, and a Raspberry Pi combined with an Intel Neural
Compute Stick 2. However, for the price of $99 at MSRP,
the Jetson Nano offered the best capability in terms of
RAM (4GB), CPU and GPU performance, and community
support, when placed next to its competitors that were
priced similarly or higher.

B. Raspberry Pi Camera Module V2

The camera used for The Smart Bird Feeder to capture
images of birds is the Raspberry Pi Camera Module V2.
This camera has a Sony IMX219 8-megapixel sensor, and
provides clear high-quality image and video capture for
The Smart Bird Feeder. It connects to and interfaces with
the Jetson Nano via a MIPI CSI-2 connector.

C. Pytorch SSD-MobileNet & Jetson Nano Software

The software for object detection of birds and squirrels
was written in Python and deployed on the Jetson Nano
Developer Kit. The NVIDIA TensorRT SDK built on
CUDA that comes packaged within the JetPack SDK [7]
was utilized for this project, since it packages together
many of the software components required for performing
object detection, and some team members already have
experience with CUDA. Figure 5 shows the
MobileNet-SSD network architecture that was retrained to
meet the requirements for object detection of 15 of the
most common bird species in Florida backyards [5] and
squirrels. The ML model also detects Green-cheeked
Parakeets, since a team member owns a bird of this
species, and so it is convenient to run tests and show
demos with this species of bird.

For retraining the MobileNet-SSD model, the
Pytorch-SSD programs, documents, and tutorials provided
by NVIDIA in the jetson-inference [3] project were
especially helpful. The jetson-inference project included

an open-use training Python script that was utilized to
retrain the MobileNet-SSD model.

Non-Maximum Supression

MobileNet-SSD
Detections 8732 per Class

Fig 5.

The software created to be run on the Jetson Nano for
The Smart Bird Feeder was written exclusively using
Python. The program that is primarily responsible for the
Jetson Nano's actions with regard to the bird feeder system
(aptly named smart_feeder_run.py) uses various Python
APIs such as PySerial, PyTime, OpenCV, and NumPy, to
operate and handle the various responsibilities of the
Jetson Nano in the overall system of The Smart Bird
Feeder. These APIs are used to establish serial
communication between the Jetson Nano and the
MSP430G2553 on the custom PCB, track time intervals
for triggering certain events, and to convert captured
images to a proper format for storing. The live camera
feed I/0 and this project's implementation of the retrained
ML model are located in this program as well.

Besides the smart_feeder_run.py program, the Jetson
Nano also occasionally runs two other Python scripts. One
script is responsible for locally saving birds memories
captured by the feeder's camera and sending the saved
image to a cloud NoSQL database (MongoDB) to be
viewable from a wuser's Smart Bird Feeder mobile
application. The other Python script interacts with a server
hosted by the Expo push notification service to notify a
user's phone of important events, such as low feed
container levels and new bird memories being created.

MobileNet-SSD architecture [2]

VI. BIRDHOUSE DESIGN

Design began with the purchase of a basic bird feeder
house, in which all of the components were emptied out to
be replaced with the new design. In order to provide an
optimum viewing angle for the camera, the feed trough
was placed outside of the bird feeder. To do this, an
additional perch was added to extend past the feeder
bottom. A bird feed container and a feed fill spout were
then both added to the birdhouse. These two components
utilize gravity to source the feed from the fill spout
opening, into the feed container, down the container's
inclined ramp, and finally into the trough on the front of
the birdhouse. The feed cover hatch was placed outside on
the front of the birdhouse to block access to the feed, so
the micro servo motor was mounted to the exterior of the

feeder and connected to the hatch. A perch for the birds to
stand on and feed from was also added in front of the
feeding trough. Finally, this design calls for all electrical
components besides the servo motor to be stored on the
interior of the birdhouse to protect from interference from
entities such as animals and weather. The ultrasonic range
finder sensor was mounted above the bird feed container
to easily measure feed levels.

LRl
ALRe

Fig 6. The Smart Bird Feeder assembled birdhouse

VII. APPLICATION DESIGN

This section of the paper details the design of the
accompanying application to the Smart Bird Feeder. This
application is essential to achieving the design goal, as it is
the interface by which the user interacts with all of the
automatic features included in the package. The primary
functionality of the app is to notify users of the species of
birds visiting the feeder, and to save a memory associated
with each visit. The application also acts as a notification
system to alert the user that the bird feed container is low
and needs to be refilled. These two key components ensure
that the user isn’t required to watch the feeder during
downtime, and in doing so furthers the design goal.

A. Frontend Application

The frontend was built with simplicity and functionality
in mind. A user will first be asked to login or create an
account. The app is designed with a pleasant color scheme
and utilizes common UI symbols to deliver important
information. Notifications will prompt the user when the
feed is low and a bird visits the feeder.

The Smart Bird Feeder's mobile application was
developed using the framework of Expo and React Native
together. Expo provided helpful components and APIs to
make development faster and simpler than if a bare React
Native workflow was used. The frontend design includes a
user login screen and signup screen, along with a welcome

screen to greet the user, along with a Bird Memories
screen which allows the user to view an organized
collection of all of their autonomously captured bird
memories.

B. Backend Application

The backend application for The Smart Bird Feeder was
written and deployed with JavaScript and the Express
framework for the Node]S runtime environment. This
backend application handles all of the routes required to
provide proper interaction between The Smart Bird
Feeder, a MongoDB cloud database for storing
documents, and a user's mobile application. These routes
include user login/signup, as well as storing and retrieving
bird memories from the cloud database where they are to
be saved. This backend application uses a library called
Mongoose to build a model for a new user or new bird
memory, and a middleware called Multer is used to store
the modeled information in noSQL documents on the
MongoDB cloud database.

VIII. COMMUNICATION

When discussing the communication aspects of the
Smart Bird Feeder, it’s important to first explain that there
are two communications protocols in use. The first
communication protocol addressed is the serial
communication between the Jetson Nano and the PCB,
while the second is to connect to the internet so that the
Jetson Nano can communicate with users of the Smart
Bird Feeder. The communication between the Jetson Nano
and the microcontroller is vital to the performance of this
device, as it is important to have information be sent back
and forth to operate the peripherals and collect data. It is
also important that the user is able to be virtually
anywhere and still be up to date with the status of the
Smart Bird Feeder, thus wireless communication
technology to send notifications, and an updated memory
gallery on the mobile application were implemented.
Therefore, the following two subsections dive deeper in
the justification and data needed to be transferred by the
UART serial communication and the REST API wireless
communication.

A. UART Serial Communication

UART stands for Universal Asynchronous Reception
and Transmission. When deciding what protocol for serial
communication was best, focus was placed on simplicity
and developer preference. First, it was necessary to
identify what was being transferred between the Jetson
Nano and the MSP430 microcontroller. There are only a
few things that must be transmitted between the two
devices. The microcontroller must reply with the status of

the feed level when asked by the Jetson Nano, close/open
the hatch when instructed, sound the alarm, and tell the
Jetson Nano when the PIR sensor has been tripped so that
the object detection cycle may run.

The Jetson Nano and MSP430G2553 only transmit and
receive messages containing a single Byte-sized character.
The Jetson Nano transmits a single Byte message to the
MSP430 to check for the following reasons:

e Ask if bird feed needs to be refilled

e Tell the MSP430 to open/close the feed hatch and

sound the alarm

The MSP430G2553 receives one of these messages,
which interrupts it from its low power mode, then it will
either pulse the servo motor, or pulse the ultrasonic
rangefinder sensor and interpret the readings to determine
whether or not the bird feed is low. The MSP430 transmits
Byte messages to the Jetson Nano for the following
reasons:

e Tell the Jetson Nano that feed is or is not low

e Tell the Jetson Nano to run object detection cycle

B. Wireless Communication

The Jetson Nano performs all wireless communication
for The Smart Bird Feeder, as it contains the WI-FI
module. Such wireless communication is executed solely
to either store a newly created bird image from The Smart
Bird Feeder device onto a MongoDB noSQL cloud
database, or to communicate with an Expo push
notification backend server to push a notification to a user.
The programs running on the Jetson Nano use REST API
calls to backend apps to direct the communication.

When it comes to the user side of things and making the
Smart Bird Feeder keep users up to date with the status of
the bird feeder, it is important that a wireless
communication protocol is able to have a range acceptable
for being outside the house and still be able to update the
database and send notifications. The reasoning behind
choosing wireless vs wired communication is mainly due
to the preference that aimed for the bird feeder to be as
user friendly and easy to install as any other competitive
similar products. Therefore, to reduce the complication
that comes with running wires outside, it was decided to
keep the Smart Bird Feeder wireless and utilize WI-FI to
transmit data.

In consideration and eventual justification for using
WI-FI for the wireless protocol, it was important for the
group to look at the range to determine the usefulness of
implementation. After looking at the range the next
consideration is ease of implementation. Therefore, once
looking at the IEEE 802.11 standard for WI-FI, and
understanding that the 2.4 GHz band can reach up to
around 150 feet indoors and around 300 feet outdoors,

which is ideal for this implementation, the only thing next
is how to integrate it within the bird feeder. Luckily, the
Intel Dual Band Wireless-AC 8265 chip was installed to
the Jetson Nano to add WIFI and Bluetooth, with many
documentations describing WI-FI to connect to the
internet and send data to the cloud and mobile application.

IX. POwER

Power is provided to the Smart Bird Feeder using a
TalentCell rechargeable 12V 6000mAh battery pack. The
PCB is outfitted with a barrel jack port which connects
directly to the battery pack to provide the regulators with
12 Volt to be converted to 5 or 3.3 Volts. As mentioned
above, these regulators provide power to the system.

Table 2 - System hardware power requirements

Voltage Current
Requirement Requirement

Jetson Nano ~5V 04-1.1A
MCU 18-36V | e e
Servo Motor 48-6V 500 mA
Speaker 5V 4-6mA
Fan 12V 0.137 A
gel:;ii‘mic 5V 15 mA
PIR Sensor 5V 65 mA
Total 36-12V 1.2-1.8A

Power consumption has been a major focal point for this
project, as the NVIDIA Jetson Nano draws upwards of 1.1
Amps while running its smart bird feeder programs. Since
the device is required to be placed outdoors, a battery
based power source was a requirement for functionality.
The Smart Bird Feeder consumes a maximum of 1.8 A on
average. However, in an effort to lower power
consumption, a sensor was added to only activate the
machine learning module when movement is detected.
This feature lowers the power consumption of the device
to around 0.5 A on average, which correlates to 60%
savings in battery life. The battery pack is therefore able to
run the system in a range of 3 hours 20 min to 6 hours 40
mins, which satisfies an engineering requirement specified
in the full paper for this project.

X. CONCLUSION

The purpose of the Smart Bird Feeder is to address the
common concerns surrounding the hobby of bird feeding
by creating a device that would minimize required time
from the user while still showing optimal results. By
establishing engineering requirements that when met
would achieve this goal, the group defined a solid metric
by which to gauge the success of the project. This paper
details the methods and design choices by which this
functionality was achieved. Thus, by creating a device
that meets or exceeds these requirements, the original
design goals were met through the creation of the Smart
Bird Feeder.

ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and
support of the instructors of the Senior Design course: Dr.
Samuel Richie and Dr. Lei Wei. The authors would also
like to offer thanks to the University of Central Florida
faculty who were kind enough to review this project.

REFERENCES

[1] About IPC. IPC International, Inc. (2020, November 19).
https://www.ipc.org/about-ipc.

[2] Dusty-Nv. (2021, May 21). Jetson-inference/pytorch-ssd.md
at master - Dusty-NV/Jetson-inference. GitHub. Retrieved
November 11, 2021, from
https://github.com/dusty-nv/jetson-inference/blob/master/do
cs/pytorch-ssd.md.

[3] Dusty-Nv. (n.d.). dusty-nv/jetson-inference: Hello Al World
guide to deploying deep-learning inference networks and
deep vision primitives with TensorRT and NVIDIA Jetson.
GitHub. https://github.com/dusty-nv/jetson-inference.

[4] EBird - discover a new world of birding... (n.d.). Retrieved
November 11, 2021, from http://ebird.org/home.

[5] Gillson, G. (2019, July 17). 26+ common backyard birds of
Florida (Photos, ID). 26+ Common backyard birds of
Florida (Photos, ID).
https://www.whatbirdsareinmybackyard.com/2019/07/most-
common-backyard-birds-of-florida.html.

[6] HC-SR04 Pin Details. (n.d.). [Mlustration].
https://microcontrollerslab.com/hc-sr04-ultrasonic-sensor-in
terfacing-with-arduino-distance-measurement-example/

[71 "IEEE Standard for Information
Technology--Telecommunications and Information
Exchange between Systems - Local and Metropolitan Area
Networks--Specific Requirements - Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY)
Specifications," in IEEE Std 802.11-2020 (Revision of
IEEE Std 802.11-2016) , vol., no., pp.1-4379, 26 Feb. 2021,
doi: 10.1109/IEEESTD.2021.9363693.

[8] Jetpack 4.5 Archive. NVIDIA Developer. (2021, January
22). https://developer.nvidia.com/jetpack-sdk-45-archive.

[9] JetPack SDK. NVIDIA Developer. (2021, May 24).
https://developer.nvidia.com/embedded/jetpack.

[10] NVIDIA. (2021, July 21). Jetson download Center.
NVIDIA Developer.
https://developer.nvidia.com/embedded/downloads.

[11] NVIDIA Corporation, “DATA SHEET NVIDIA Jetson
Nano System-on-Module” | DA-09366-001_v1.0 datasheet,
Feb. 2020.

[12] PiezoBendingPrinciple.svg. (2011, February 17).
[Ilustration].
https://commons.wikimedia.org/wiki/File:PiezoBendingPrin
ciple.svg

[13] Texas Instruments. (2011, April). SLAS735] MIXED
SIGNAL MICROCONTROLLER. Dallas.

https://www.ti.com/lit/ds/symlink/msp430g2553.pdf?ts=163
6685136752&ref_url=https %253 A%252F%252Fwww
.ti.com%?252Fproduct%252FMSP430G2553

[14] Wah C., Branson S., Welinder P., Perona P., Belongie S.

“The Caltech-UCSD Birds-200-2011 Dataset.”
Computation & Neural Systems Technical Report,
CNS-TR-2011-001.

BioGraPHY

Paul Amoruso is a Computer Engineering
student at the University of Central Florida
planning to graduate this semester with his
bachelor's degree. After graduating, he will
pursue his Master’s degree in Computer
Engineering starting Spring of 2022 at UCF. Other interests
include Computer Architecture topics and gardening in the
greenhouse he built.

John Hauff is a Senior baccalaureate student in
Computer Engineering at the University of
Central Florida. His interests include software
development and embedded systems, and
mentoring others in these areas. After
graduating, John hopes to begin his career as a
computer engineer or software engineer in the
Orlando area.

Nikki Marrow is an Electrical Engineering
student at the University of Central Florida. She
is currently working as a firmware engineer at
Lockheed Martin in Orlando, previously working
on circuit design and testing. After graduating,
she plans to work at Lockheed full-time. Other
interests of hers include research in surface
science and molecular dynamics.

Matthew Wilkinson is a graduating Computer
Engineering student from the University of
Central Florida. Following graduation he will be
working for Disney’s Design and Engineering
team as a Controls Engineer. He hopes to
continue pursuing a career path in controls with
a focus in entertainment.

https://microcontrollerslab.com/hc-sr04-ultrasonic-sensor-interfacing-with-arduino-distance-measurement-example/
https://microcontrollerslab.com/hc-sr04-ultrasonic-sensor-interfacing-with-arduino-distance-measurement-example/

